[Journal papers] [Conference papers] [PhD Theses] [MSc Theses]

 

Conference paper
Adaptable Urban Water Demand Prediction System
IWA World Water Congress and Exhibition (IWA 2014), 2014
ABSTRACT:

In this work identification of 24-hours-ahead water demand prediction model based on historical water demand data is considered. As part of the identification procedure, the input variable selection algorithm based on partial mutual information is implemented. It is shown that meteorological data on a daily basis are not relevant for the water demand prediction in the sense of partial mutual information for the analysed water distribution system of the city of Tavira, Algarve, Portugal. Water demand prediction system is modelled using artificial neural networks which offer a great potential for the identification of complex dynamic systems. The adaptive tuning procedure of model parameters is also developed in order to enable the model to adapt to changes in the system. A significant improvement of the prediction ability of such model in relation to the model with fixed parameters is shown when a certain trend is present in the water demand profile.

BibTeX entry:
@inproceedings \{Banjac2014_549,
author = \{Banjac, G. AND Va\v{s}ak, M. AND Baoti\'{c}, M.},
title = \{Adaptable Urban Water Demand Prediction System},
booktitle = {IWA World Water Congress and Exhibition (IWA 2014)},
year = \{2014}
}

 

 

 

 

 

Home
About Us
People
Visitors
Groups
Projects
Publications
Software
Courses
Laboratory
Seminars
Students
Matlab
Alumni
Links